Elevated CO2 increases energetic cost and ion movement in the marine fish intestine
نویسندگان
چکیده
Energetic costs associated with ion and acid-base regulation in response to ocean acidification have been predicted to decrease the energy available to fish for basic life processes. However, the low cost of ion regulation (6-15% of standard metabolic rate) and inherent variation associated with whole-animal metabolic rate measurements have made it difficult to consistently demonstrate such a cost. Here we aimed to gain resolution in assessing the energetic demand associated with acid-base regulation by examining ion movement and O2 consumption rates of isolated intestinal tissue from Gulf toadfish acclimated to control or 1900 μatm CO2 (projected for year 2300). The active marine fish intestine absorbs ions from ingested seawater in exchange for HCO3- to maintain water balance. We demonstrate that CO2 exposure causes a 13% increase of intestinal HCO3- secretion that the animal does not appear to regulate. Isolated tissue from CO2-exposed toadfish also exhibited an 8% higher O2 consumption rate than tissue from controls. These findings show that compensation for CO2 leads to a seemingly maladaptive persistent base (HCO3-) loss that incurs an energetic expense at the tissue level. Sustained increases to baseline metabolic rate could lead to energetic reallocations away from other life processes at the whole-animal level.
منابع مشابه
Changes to Intestinal Transport Physiology and Carbonate Production at Various CO2 Levels in a Marine Teleost, the Gulf Toadfish (Opsanus beta).
Most marine teleosts defend blood pH during high CO2 exposure by sustaining elevated levels of HCO3(-) in body fluids. In contrast to the gill, where measures are taken to achieve net base retention, elevated CO2 leads to base loss in the intestine of marine teleosts studied to date. This loss is thought to occur through transport pathways previously demonstrated to be involved with routine osm...
متن کاملThe intestinal response to feeding in seawater gulf toadfish, Opsanus beta, includes elevated base secretion and increased epithelial oxygen consumption.
Intestinal HCO3- secretion is essential to marine teleost fish osmoregulation and comprises a considerable source of base efflux attributable to both serosal HCO3- and endogenous CO2 hydration. The role of intestinal HCO3- secretion in dynamic acid-base balance regulation appears negligible in studies of unfed fish, but evidence of high intestinal fluid [HCO3-] in fed marine teleosts led us to ...
متن کاملBasolateral NBCe1 plays a rate-limiting role in transepithelial intestinal HCO3- secretion, contributing to marine fish osmoregulation.
Although endogenous CO2 hydration and serosal HCO3- are both known to contribute to the high rates of intestinal HCO3- secretion important to marine fish osmoregulation, the basolateral step by which transepithelial HCO3- secretion is accomplished has received little attention. Isolated intestine HCO3- secretion rates, transepithelial potential (TEP) and conductance were found to be dependent o...
متن کاملThe Prevalence of Campylobacter, Listeria and Salmonella Species in Freshwater and Salt-Water Fish
A total of 154 samples of marine (n=51) and freshwater fish (n=103) were obtained from fish markets in Elazig Province of eastern Turkey. These samples were tested for Campylobacter, Listeria and Salmonella using culturing and biochemical methods. Campylobacter failed to be detected in any freshwater or marine fish samples. Listeria was detected in 22 and 14 of gill and skin samples from freshw...
متن کاملElevated CO2 enhances aerobic scope of a coral reef fish
The uptake of anthropogenic CO2 by the ocean has been suggested to impact marine ecosystems by decreasing the respiratory capacity of fish and other water breathers. We investigated the aerobic metabolic scope of the spiny damselfish, Acanthochromis polyacanthus, from the Great Barrier Reef, Australia when exposed for 17 days to CO2 conditions predicted for the end of the century (946 μatm CO2)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016